- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Guo, Qi (2)
-
Punshon, Tracy (2)
-
Tappero, Ryan (2)
-
Barkla, Bronwyn J (1)
-
Barkla, Bronwyn_J (1)
-
Carpaneto, Armando (1)
-
Gradogna, Antonella (1)
-
Hirschi, Kendal D (1)
-
Hirschi, Kendal_D (1)
-
Mathew, Iny Elizebeth (1)
-
Rhein, Hormat Shadgou (1)
-
Sarkar, Shayan (1)
-
Scholz‐Starke, Joachim (1)
-
Yang, Jian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Research on elemental distribution in plants is crucial for understanding nutrient uptake, environmental adaptation and optimizing agricultural practices for sustainable food production. Plant trichomes, with their self-contained structures and easy accessibility, offer a robust model system for investigating elemental repartitioning. Transport proteins, such as the four functional cation exchangers (CAXs) in Arabidopsis, are low-affinity, high-capacity transporters primarily located on the vacuole. Mutants in these transporters have been partially characterized, one of the phenotypes of the CAX1 mutant being altered with tolerance to low-oxygen conditions. A simple visual screen demonstrated trichome density and morphology in cax1, and quadruple CAX (cax1-4: qKO) mutants remained unaltered. Here, we used synchrotron X-ray fluorescence (SXRF) to show that trichomes in CAX-deficient lines accumulated high levels of chlorine, potassium, calcium and manganese. Proteomic analysis on isolated Arabidopsis trichomes showed changes in protein abundance in response to changes in element accumulation. The CAX mutants showed an increased abundance of plasma membrane ATPase and vacuolar H-pumping proteins, and proteins associated with water movement and endocytosis, while also showing changes in proteins associated with the regulation of plasmodesmata. These findings advance our understanding of the integration of CAX transport with elemental homeostasis within trichomes and shed light on how plants modulate protein abundance under conditions of altered elemental levels.more » « less
-
Mathew, Iny Elizebeth; Rhein, Hormat Shadgou; Yang, Jian; Gradogna, Antonella; Carpaneto, Armando; Guo, Qi; Tappero, Ryan; Scholz‐Starke, Joachim; Barkla, Bronwyn J; Hirschi, Kendal D; et al (, Plant, Cell & Environment)Abstract Multiple Arabidopsis H+/Cation exchangers (CAXs) participate in high‐capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1‐4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast‐localised H+/Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP‐MS) and synchrotron X‐ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP‐MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild‐type plants grown in Ca‐limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+/Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.more » « less
An official website of the United States government
